Some Criteria for Nilpotency in Groups and Lie Algebras
نویسنده
چکیده
We shall say that an automorphism a is nilpotent or acts nilpotently on a group G if in the holomorph H= [G](a) of G with a, a is a bounded left Engel element, that is, [H, ¿a] = l for some natural number ¿. Here [H, ka] means [H, (k — l)a] with [H, Oa] denoting H. Let G' denote the commutator subgroup [G, G], and let $(G) denote the Frattini subgroup of G. If a is an automorphism of a nilpotent group G such that the automorphism ä induced by a on G/G' is nolpotent (or with certain restrictions on the exponent of G on G/Í»(G)), then by a well-known theorem of Philip Hall (cf. [6, p. 202]), a is nilpotent. Here we shall show that the same conclusion follows if we know that the restriction of a to a suitable subgroup of a nilpotent group is nilpotent. We prove the following two theorems announced in [7].
منابع مشابه
Some properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملLie Nilpotency Indices of Modular Group Algebras
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that if KG is Lie nilpotent then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. The class of groups G for which these indices are maximal or almost maximal have already been determined. Here we determine G for which upper (or lower) L...
متن کاملModular Group Algebras with Almost Maximal Lie Nilpotency Indices, Ii
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. Previously we determined the groups G for which the upper/lower nilpotency index is maximal or the upper nilpotency index is ‘almost maximal’ (that is, ...
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملSolvable Lie Algebras and Maximal Abelian Dimensions
In this paper some results on the structure of finite-dimensional Lie algebras are obtained by means of the concept of maximal abelian dimension. More concretely, a sufficient condition is given for the solvability in finite-dimensional Lie algebras by using maximal abelian dimensions. Besides, a necessary condition for the nilpotency is also stated for such Lie algebras. Finally, the maximal a...
متن کاملModular Group Algebras with Maximal Lie Nilpotency Indices
In the present paper we give the full description of the Lie nilpo-tent group algebras which have maximal Lie nilpotency indices.
متن کامل